Electrophysiological heterogeneity of spinally projecting serotonergic and nonserotonergic neurons in the rostral ventromedial medulla.
نویسندگان
چکیده
This study examined the passive membrane and action potential properties of serotonergic and nonserotonergic neurons in the rostral ventromedial medulla (RVM) of the rat using whole cell patch-clamp recording techniques in the slice. Serotonergic neurons were identified by immunoreactivity for tryptophan hydroxylase (TrpH). Spinally projecting neurons were retrogradely labeled with 1'-dioactadecyl-3,3,3',3'-tetramethylindocarbodyanine perchlorate (DiI). Three types of neurons were identified within both spinally projecting serotonergic and nonserotonergic populations. Type 1 neurons exhibited irregular or sporadic spontaneous activity interspersed with periods of quiescence. Type 2 neurons were not spontaneously active and were additionally discriminated by a more negative resting membrane potential and a larger-amplitude action potential. Type 3 neurons fired repetitively without pause. Serotonergic neurons had a higher membrane resistance and greater action potential half-width than their nonserotonergic counterparts and rarely exhibited a fast afterhyperpolarization. Serotonergic type 3 neurons also fired more slowly and regularly than nonserotonergic type 3 neurons. Comparison of electrophysiological and immunohistochemical characteristics suggested that the smallest type 3 serotonergic neurons had an increased risk of immunohistochemical "misclassification" due to failure to detect TrpH, possibly due to more complete dialysis of intracellular contents during lengthy recordings. This risk was minimal for type 1 or 2 serotonergic neurons. The three different types of spinally projecting serotonergic neurons also differed markedly in their responsiveness to the mu opioid receptor agonist D-Ala2, NMePhe4, Gly5-ol]enkephalin. These results provide important new electrophysiological and pharmacological evidence for a significant heterogeneity among spinally projecting serotonergic RVM neurons. They may also provide a basis for resolving the controversy concerning the role of serotonergic RVM neurons in opioid analgesia.
منابع مشابه
Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes.
The rostral ventromedial medulla (RVM) forms part of a descending pathway that modulates nociceptive neurotransmission at the level of the spinal cord dorsal horn. However, the involvement of descending RVM systems in opioid analgesia are a matter of some debate. In the present study, patch-clamp recordings of RVM neurons were made from rats that had received retrograde tracer injections into t...
متن کاملSubstance P enhances excitatory synaptic transmission on spinally projecting neurons in the rostral ventromedial medulla after inflammatory injury.
It has been proposed, but not directly tested, that persistent inflammatory nociception enhances excitatory glutamatergic inputs to neurons in the rostral ventromedial medulla (RVM), altering the activity and function of these neurons. This study used whole cell patch-clamp methods to record evoked excitatory postsynaptic currents (eEPSCs) in spinally projecting RVM neurons from rats injected w...
متن کاملOpioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice.
The rostral ventromedial medulla (RVM) is an important site of opioid actions and forms part of an analgesic pathway that projects to the spinal cord. The neuronal mechanisms by which opioids act within this brain region remain unclear, particularly in relation to the neurotransmitters GABA and serotonin. In the present study, we examined serotonergic and GABAergic immunoreactivity, identified ...
متن کاملSubstance P Enhances Excitatory Synaptic Transmission on Spinally 1 Projecting Neurons in the Rostral Ventromedial Medulla After Inflammatory 2 Injury
Substance P Enhances Excitatory Synaptic Transmission on Spinally 1 Projecting Neurons in the Rostral Ventromedial Medulla After Inflammatory 2 Injury 3 Liang Zhang and Donna L. Hammond 4 Departments of Anesthesia and Pharmacology 5 The University of Iowa 6 Iowa City, IA 52242 U.S.A. 7 Abstract: 249 words Introduction: 697 words Discussion: 2142 words 8 Tables: 0 Figures: 8 9 Running Title: Inf...
متن کاملSeparate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat.
Activation of neurons in the rostral ventromedial medulla (RVM) directly modulates spinal nociceptive transmission by projections to the spinal cord dorsal horn and indirectly by projections to neurons in the dorsolateral pons (DLP) that project to the spinal cord dorsal horn. However, it is not known whether the same neurons in the RVM produce both direct and indirect modulation of nociception...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 3 شماره
صفحات -
تاریخ انتشار 2006